3.262 \(\int x (d+e x)^3 \left (d^2-e^2 x^2\right )^p \, dx\)

Optimal. Leaf size=116 \[ -\frac{(d+e x)^3 \left (d^2-e^2 x^2\right )^{p+1}}{e^2 (2 p+5)}-\frac{3 d^3 2^{p+3} \left (d^2-e^2 x^2\right )^{p+1} \left (\frac{e x}{d}+1\right )^{-p-1} \, _2F_1\left (-p-3,p+1;p+2;\frac{d-e x}{2 d}\right )}{e^2 (p+1) (2 p+5)} \]

[Out]

-(((d + e*x)^3*(d^2 - e^2*x^2)^(1 + p))/(e^2*(5 + 2*p))) - (3*2^(3 + p)*d^3*(1 +
 (e*x)/d)^(-1 - p)*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[-3 - p, 1 + p, 2 +
p, (d - e*x)/(2*d)])/(e^2*(1 + p)*(5 + 2*p))

_______________________________________________________________________________________

Rubi [A]  time = 0.170124, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13 \[ -\frac{(d+e x)^3 \left (d^2-e^2 x^2\right )^{p+1}}{e^2 (2 p+5)}-\frac{3 d^3 2^{p+3} \left (d^2-e^2 x^2\right )^{p+1} \left (\frac{e x}{d}+1\right )^{-p-1} \, _2F_1\left (-p-3,p+1;p+2;\frac{d-e x}{2 d}\right )}{e^2 (p+1) (2 p+5)} \]

Antiderivative was successfully verified.

[In]  Int[x*(d + e*x)^3*(d^2 - e^2*x^2)^p,x]

[Out]

-(((d + e*x)^3*(d^2 - e^2*x^2)^(1 + p))/(e^2*(5 + 2*p))) - (3*2^(3 + p)*d^3*(1 +
 (e*x)/d)^(-1 - p)*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[-3 - p, 1 + p, 2 +
p, (d - e*x)/(2*d)])/(e^2*(1 + p)*(5 + 2*p))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 33.3364, size = 104, normalized size = 0.9 \[ - \frac{24 d^{4} \left (\frac{\frac{d}{2} + \frac{e x}{2}}{d}\right )^{- p} \left (d - e x\right )^{- p} \left (d - e x\right )^{p + 1} \left (d^{2} - e^{2} x^{2}\right )^{p}{{}_{2}F_{1}\left (\begin{matrix} - p - 3, p + 1 \\ p + 2 \end{matrix}\middle |{\frac{\frac{d}{2} - \frac{e x}{2}}{d}} \right )}}{e^{2} \left (p + 1\right ) \left (2 p + 5\right )} - \frac{\left (d + e x\right )^{3} \left (d^{2} - e^{2} x^{2}\right )^{p + 1}}{e^{2} \left (2 p + 5\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x*(e*x+d)**3*(-e**2*x**2+d**2)**p,x)

[Out]

-24*d**4*((d/2 + e*x/2)/d)**(-p)*(d - e*x)**(-p)*(d - e*x)**(p + 1)*(d**2 - e**2
*x**2)**p*hyper((-p - 3, p + 1), (p + 2,), (d/2 - e*x/2)/d)/(e**2*(p + 1)*(2*p +
 5)) - (d + e*x)**3*(d**2 - e**2*x**2)**(p + 1)/(e**2*(2*p + 5))

_______________________________________________________________________________________

Mathematica [A]  time = 0.253076, size = 207, normalized size = 1.78 \[ \frac{\left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \left (2 e^5 \left (p^2+3 p+2\right ) x^5 \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )+10 d^2 e^3 \left (p^2+3 p+2\right ) x^3 \, _2F_1\left (\frac{3}{2},-p;\frac{5}{2};\frac{e^2 x^2}{d^2}\right )-5 d \left (2 d^2 e^2 (p-1) x^2 \left (1-\frac{e^2 x^2}{d^2}\right )^p-3 e^4 (p+1) x^4 \left (1-\frac{e^2 x^2}{d^2}\right )^p+d^4 (p+5) \left (\left (1-\frac{e^2 x^2}{d^2}\right )^p-1\right )\right )\right )}{10 e^2 (p+1) (p+2)} \]

Antiderivative was successfully verified.

[In]  Integrate[x*(d + e*x)^3*(d^2 - e^2*x^2)^p,x]

[Out]

((d^2 - e^2*x^2)^p*(-5*d*(2*d^2*e^2*(-1 + p)*x^2*(1 - (e^2*x^2)/d^2)^p - 3*e^4*(
1 + p)*x^4*(1 - (e^2*x^2)/d^2)^p + d^4*(5 + p)*(-1 + (1 - (e^2*x^2)/d^2)^p)) + 1
0*d^2*e^3*(2 + 3*p + p^2)*x^3*Hypergeometric2F1[3/2, -p, 5/2, (e^2*x^2)/d^2] + 2
*e^5*(2 + 3*p + p^2)*x^5*Hypergeometric2F1[5/2, -p, 7/2, (e^2*x^2)/d^2]))/(10*e^
2*(1 + p)*(2 + p)*(1 - (e^2*x^2)/d^2)^p)

_______________________________________________________________________________________

Maple [F]  time = 0.079, size = 0, normalized size = 0. \[ \int x \left ( ex+d \right ) ^{3} \left ( -{e}^{2}{x}^{2}+{d}^{2} \right ) ^{p}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x*(e*x+d)^3*(-e^2*x^2+d^2)^p,x)

[Out]

int(x*(e*x+d)^3*(-e^2*x^2+d^2)^p,x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p*x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left ({\left (e^{3} x^{4} + 3 \, d e^{2} x^{3} + 3 \, d^{2} e x^{2} + d^{3} x\right )}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p*x,x, algorithm="fricas")

[Out]

integral((e^3*x^4 + 3*d*e^2*x^3 + 3*d^2*e*x^2 + d^3*x)*(-e^2*x^2 + d^2)^p, x)

_______________________________________________________________________________________

Sympy [A]  time = 15.4426, size = 479, normalized size = 4.13 \[ d^{3} \left (\begin{cases} \frac{x^{2} \left (d^{2}\right )^{p}}{2} & \text{for}\: e^{2} = 0 \\- \frac{\begin{cases} \frac{\left (d^{2} - e^{2} x^{2}\right )^{p + 1}}{p + 1} & \text{for}\: p \neq -1 \\\log{\left (d^{2} - e^{2} x^{2} \right )} & \text{otherwise} \end{cases}}{2 e^{2}} & \text{otherwise} \end{cases}\right ) + d^{2} d^{2 p} e x^{3}{{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, - p \\ \frac{5}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )} + 3 d e^{2} \left (\begin{cases} \frac{x^{4} \left (d^{2}\right )^{p}}{4} & \text{for}\: e = 0 \\- \frac{d^{2} \log{\left (- \frac{d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} - \frac{d^{2} \log{\left (\frac{d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} - \frac{d^{2}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} + \frac{e^{2} x^{2} \log{\left (- \frac{d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} + \frac{e^{2} x^{2} \log{\left (\frac{d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} & \text{for}\: p = -2 \\- \frac{d^{2} \log{\left (- \frac{d}{e} + x \right )}}{2 e^{4}} - \frac{d^{2} \log{\left (\frac{d}{e} + x \right )}}{2 e^{4}} - \frac{x^{2}}{2 e^{2}} & \text{for}\: p = -1 \\- \frac{d^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} - \frac{d^{2} e^{2} p x^{2} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} + \frac{e^{4} p x^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} + \frac{e^{4} x^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} & \text{otherwise} \end{cases}\right ) + \frac{d^{2 p} e^{3} x^{5}{{}_{2}F_{1}\left (\begin{matrix} \frac{5}{2}, - p \\ \frac{7}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{5} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x*(e*x+d)**3*(-e**2*x**2+d**2)**p,x)

[Out]

d**3*Piecewise((x**2*(d**2)**p/2, Eq(e**2, 0)), (-Piecewise(((d**2 - e**2*x**2)*
*(p + 1)/(p + 1), Ne(p, -1)), (log(d**2 - e**2*x**2), True))/(2*e**2), True)) +
d**2*d**(2*p)*e*x**3*hyper((3/2, -p), (5/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)
+ 3*d*e**2*Piecewise((x**4*(d**2)**p/4, Eq(e, 0)), (-d**2*log(-d/e + x)/(-2*d**2
*e**4 + 2*e**6*x**2) - d**2*log(d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2) - d**2/(-2
*d**2*e**4 + 2*e**6*x**2) + e**2*x**2*log(-d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2)
 + e**2*x**2*log(d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2), Eq(p, -2)), (-d**2*log(-
d/e + x)/(2*e**4) - d**2*log(d/e + x)/(2*e**4) - x**2/(2*e**2), Eq(p, -1)), (-d*
*4*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) - d**2*e**2*p*x**2*(d
**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) + e**4*p*x**4*(d**2 - e**2
*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) + e**4*x**4*(d**2 - e**2*x**2)**p/(2
*e**4*p**2 + 6*e**4*p + 4*e**4), True)) + d**(2*p)*e**3*x**5*hyper((5/2, -p), (7
/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/5

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int{\left (e x + d\right )}^{3}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p*x,x, algorithm="giac")

[Out]

integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p*x, x)